Contaminación bacteriana de Productos Cárnicos Ovinos Comercializados en la Meseta Central de México

Bacterial Contamination of Sheep Meat Marketed in the Central Mexican Plateau

Velázquez Garduño, G.¹, Reyes-Reyes, P.¹, Mariezcurrena-Berasain, M. D.¹, Gutiérrez-Ibañez, A.T.¹ y Mariezcurrena-Berasain, M. A.²

¹Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México. ²Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México. Instituto Literario 100, Colonia Centro, Toluca, Estado de México, C. P. 50000. Tel. and Fax: + 52 1 (722) 2965518, Ext. 194.

 Autor para correspondencia: nekkane16@hotmail.com

Recibido: 13/01/2014 Aceptado: 15/07/2014

RESUMEN

El estudio se realizó para evaluar la contaminación microbiológica de las canales de ovino comercializadas en el Altiplano Central Mexicano, durante el período Primavera - Verano 2012. Se recolectaron muestras en tres expendios mayoristas de las canales de ovino antes de la refrigeración, las manos de los trabajadores, y los cuchillos, utilizando la técnica de hisopo húmedo. Las muestras se analizaron para Cuenta Total de Aerobios Viables (TAVC), Cuenta Coliformes Totales (CCT) y Cuenta Coliformes Fecales (FCC), los conteos se determinaron por el método de recuento estándar en placa. Las medias de TAVC de las canales de ovino, las manos del personal, y los cuchillos fueron de 0,99 ± 0,81, 0,78 ± 0,53 y 1,84 ± 0,28 log¹⁰ UFC / mL, respectivamente; no se encontraron diferencias estadísticamente significativas (P <0,05). La media de TCC para las canales fue de 0,74 ± 0,56 log¹⁰ UFC / mL y 0,36 ± 0,48 log¹⁰ UFC/mL para cuchillos, no se encontraron diferencias estadísticamente significativas (P <0,05). No se detectaron FCC en las canales de ovino, el personal y los cuchillos. Los resultados indicaron buenas condiciones higiénicas y de manipulación durante los canales de comercialización.

Palabras clave: Enfermedades transmitidas por alimentos, seguridad alimentaria, canales de ovinos, TAVC, CCT.
The study was conducted to evaluate the sheep carcasses microbiological contamination sold in the Central Mexican Plateau, during Spring-Summer 2012 period. At three wholesalers were collected samples from sheep carcasses, workers’ hands, and knives before chilling, using a wet swab sampling. The samples were analyzed for Total Aerobic Viable Count (TAVC), Total Coliforms’ Count (TC) and Fecal Coliforms’ Count (FCC); the counts were determined by standard plate count methods. The mean log10 TAVC from sheep carcasses, personnel, and knives were of 0.99 ± 0.81, 0.78 ± 0.53, and 1.84 ± 0.28 CFU/ml, respectively without statistically significant difference (P<0.05). For TCC a mean log10 of 0.74 ± 0.56 CFU/ml for carcasses and 0.36 ± 0.48 CFU/mL from knives were not found statistically significant difference (P<0.05). FCC were not detected for sheep carcasses, personnel, and knives. The results indicated good hygienic conditions and handling during carcasses marketing.

Keywords: foodborne illnesses, food safety, sheep carcasses, TAVC, TCC.

INTRODUCTION

Foodborne illnesses (FBI) are widespread around the world and they represent a huge cost in term of human lives and suffering (Waal and Robert, 2005). FBI, although awkward to quantify, for Mexican population health are considered outstanding. Acute infectious diseases transmitted by bacteria, parasites and virus, through one of the possible routes, feeding are an important cause of morbidity in Mexico (FAO, 2002). Food safety is critical for Mexico development, because it has an impact on population health, food trade, and world-wide on the country efficiency and productivity (FAO, 2002).

The meat by its nature and origin is a favorable environment for pathogenic bacteria growth, is also frequently implied in foodborne illnesses introduction (FBI) (Signorini et al., 2006). Poor slaughtering and marketing operations make microbiological contamination easier, due to the contact of meat with dirt, fecal matter and dust (Hernandez et al. 2007). This study was carried out to determine the microbial contamination in sheep carcasses sold in Central Mexican Plateau by identifying pathogenic microorganisms during marketing process, considering the reception of the animal after slaughtering in the wholesales until its sale to the retailers.

MATERIALS AND METHODS

The work was conducted during Spring–Summer 2012 period, in three wholesalers at the municipality of Capulhuac, State of Mexico, located in state center (INEGI, 2009).

Sampling

From three different wholesalers a total of 108 sheep carcasses, 36 workers’ hands, and 36 knives swab samples were collected during six weeks. Samples were collected post slaughter and before marketing. Three carcasses were randomly chosen per week from each wholesaler for bacteriological sampling. It was used a non-destructive method, swabs were moistened prior to sample collection, in a sterile broth of 0.1% peptone plus 0.85% NaCl. Four sites of each carcass (flank, thorax lateral, brisket and breast) were swabbed to form a composite sample; each one covered an area of 100cm² per sampling site, the total area sampled was 400cm². The swab was rubbed first vertically, then horizontally and finally
diagonally for 20 seconds across the entire meat surface delineated by a sterile stainless steel template.

The samples were transported in a refrigerated enclosure to the laboratory the same day for microbiological analysis.

Personnel samples were taken from their hands with cotton swabs moistened in 10 mL of buffered peptone water from a surface area of 20 cm² marked with a sterile template. The samples were taken from the worker in charge of quartered the sheep carcasses.

Knives used for carcasses quartering were rubbed with a swab moistened in 1 mL of buffered peptone water where the handle is joined with the blade.

The samples were transported in a cooler at refrigeration temperature to the laboratory to be examined within 24 hours after sampling.

Microbiological analyses

Samples were diluted before plating in 0.1% peptone + 0.85% NaCl water, the samples in the bottles were taken in consideration as 10⁰ dilution.

Diluted samples were inoculated on plate count agar for Total Aerobic Viable Count (TAVC) and incubated at 35°C for 48 h. Total Coliforms Count (TCC) was in red bile glucose agar at 35°C for 24 h. And for the Fecal Coliforms Count (FCC) diluted samples were deposited in the same TCC agar at 45°C for 24 h.

Statistical analysis

Bacterial counts were converted to log10 CFU / mL, and statistically analyzed by Kruskall – Wallis test; with that purpose the statistical package Statgraphics Plus version 5.0 was used.

RESULTS

The mean value for TAVC carcasses samples is 0.99 ± 0.81 log10 CFU / mL and for total coliforms count (TCC) was 0.74 ± 0.56 log10 CFU / mL. Results are shown in Table 1.

<table>
<thead>
<tr>
<th>Microbiological variables</th>
<th>Wholesalers</th>
<th>Mean</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>TAVC (log10 CFU / mL ± s)</td>
<td>0.99ᵃ ± 0.73</td>
<td>0.95ᵃ ± 0.89</td>
<td>1.02ᵃ ± 0.86</td>
</tr>
<tr>
<td>TCC (log10 CFU / mL ± s)</td>
<td>0.52ᵃ ± 0.59</td>
<td>0.70ᵃ ± 0.73</td>
<td>0.59ᵃ ± 0.47</td>
</tr>
<tr>
<td>FCC (log10 CFU / mL ± s)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: not detected; ᵉ different letters within each row denote significant differences; s Standard deviation

Referencia:

Velázquez et al., 2014

Table 1. Mean values of TAVC, TCC and FCC of carcasses samples obtained from three wholesalers.
For personnel TAVC mean was 0.78 ± 0.53, and knives 1.84 ± 0.28 log_{10} CFU / ml. Fecal coliforms count (FCC) from personnel, and knives were not detected. The results are reported in Table 2.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TAVC</th>
<th>TCC</th>
<th>FCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(log_{10} CFU / ml ± s)</td>
<td>(log_{10} CFU / ml ± s)</td>
<td>(log_{10} CFU / ml ± s)</td>
</tr>
<tr>
<td>Knives</td>
<td>1.84 ± 0.28</td>
<td>0.36 ± 0.48</td>
<td>ND</td>
</tr>
<tr>
<td>Workers’ hands</td>
<td>0.78 ± 0.53</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: Not detected; s: Standard deviation

In general, the carcasses and knives presented greater contamination (< 0.05) of TAVC, TCC than workers’ hands.

DISCUSSION

The level of the TAVC is usually accepted as a criterion for microbiological contamination of carcasses and as an indicator microorganism of hygiene (Zweifel and Stephan, 2003). The mean of TAVC during our study was 0.99 ± 0.81 log_{10} CFU / mL, within the values accepted by Mexican Official Standard NOM-213-SSA1-2002, since it does not apply for this parameter, it can be due to that the product at issue is a food that must be cooked for consumption, eliminating this microorganism group growth. Nevertheless, for Standard 2004 / 471 / CEE was within the values, lower than 3.5 log_{10} CFU / ml. Our results were slightly lower than ones report by Desmarchelier et al. (2007) of 1.8 log_{10} CFU / ml. Likewise the results were inferior to those reported by Sumner et al.(2003), Phillips et al. (2001), y Zweifel y Stephan (2003), who respectively recorded rates of 2.59 log_{10} CFU / ml, 3.3 log_{10} CFU / ml and 3.0 log_{10} CFU / ml, respectively. Feizullah and Daskalov (2010) quantified rates between 4.09 and 6.79 log_{10} CFU /cm² in small slaughterhouses and between 4.32 and 7.20 log_{10} CFU/cm² in great slaughterhouses. Other works showed significantly higher results than ours, such as El-Hadef et al. (2005) that reported values of 5.42 log_{10} CFU / mL and Bhandare et al. (2007) of 6.06 log_{10} CFU / mL.

Coliform bacteria are often associated with human and animal fecal matter, they are not necessarily disease producing themselves, but can be indicators of organisms that cause adverse health effects (Ray and Bhunia, 2008). Total coliform bacteria are classified as a “primary” standard and have a maximum contaminant level (MCL) of zero colonies per 100 mL (Haque et al., 2008), similarly as for
aerobic mesophiles in the Mexican Official Standard, is indicated not applicable for this microorganism group probably for the same reason. The mean of TCC in our work was 0.74 ± 0.56 log10 CFU / mL, lower than the report by Hernández et al. (2007) and Haque et al. (2008) with rates of 4.85 log10 CFU/mL and 1.03 log10 CFU / ml, respectively. Add to this, Phillips et al. (2001), Bhandare et al. (2005), Byrne et al. (2005), Desmarchelier et al. (2007), Nouchi y Hamdi (2009), Feisullah and Daslakov (2010), Phillips et al. (2008a, 2008b), Bass et al. (2011), Phillips et al. (2013), Salmela et al. (2013) did not detect coliforms bacteria in sheep carcasses.

In addition to carcasses these microorganisms groups are quantified in knives and workers’ hands, and the results of the current research for knives were 1.84 ± 0.28 log10 CFU / mL for TVAC, they are lower than those noted by Abdalla et al. (2009) of 3.1 ± 0.4 log10 CFU / mL, Bhandare et al. (2009) of 5.52±0.03 log10 CFU / cm². Similarly, in the current work, the rate for TCC is of 0.36 ± 0.48 log10 UFC/cm², not being research reports which show the presence of these microorganisms.

When TAVC and TCC are quantified in workers’ hands, values of 0.78 ± 0.53 log10 CFU / mL for TAVC were found, and TCC were not detected in the current research. However, Abdalla et al. (2007) reported a rate of 3.8±0.53 log10 CFU / mL in workers’ hands after evisceration.

Concerning fecal coliforms contamination, we did not detect for carcasses, personnel and knives. These results reflect the care during the manipulation of the channels, as well as the personal hygiene. As for aerobic mesophiles and coliform bacteria in Mexican Official Standard NOM – 213 – SSA1 – 2002, indicate that it do not apply for this microorganisms group.

CONCLUSION

Overall, this study showed that contamination level for sheep carcasses and knives use for cutting, and workers’ hands who carried out this work from the three sheep meat wholesalers was considered very low compared to similar studies and Official Standards as 2004 / 471 / CEE and NOM-213-SSA1-2002. For future researches is suggested to carry out TAVC, CCT, FCC analysis in study area small retailers in order to detect in them microorganisms presence.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support to Autonomous University of the State of Mexico (UAEM), Key Project 3222/2012CHT for the scholarship granted to the undergraduate student in A. E. Priscila Reyes Reyes.

LITERATURA CITADA

Revista Científica Biológico Agropecuaria Tuxpan 2 (1) ISSN: 2007-6940
contamination in an abattoir and the meat shops in Mumbai, India. As. J. Fod Ag-Ind., 2(03): 280-290.

NFV-08-60. 1996. Microbiology of food and animal feeding stuff – enumeration of Thermotolerant Coliforms by colonies – count technique at 44oC – Routine Method.

prueba. Diario Oficial de la Federación. 21 p.
https://doi.org/10.1142/9789814405041_0045
https://doi.org/10.1016/j.ijfoodmicro.2010.05.010
https://doi.org/10.4315/0362-028x-64.5.697
https://doi.org/10.4315/0362-028x-71.6.1232
https://doi.org/10.1016/j.meatsci.2006.03.017
https://doi.org/10.1016/j.foodcont.2012.10.019
https://doi.org/10.1016/j.ijfoodmicro.2010.11.012
https://doi.org/10.1016/j.foodcont.2012.10.017
https://doi.org/10.24275/uaam/iz/dcb/snacameh/2007v1n2/signorini
https://doi.org/10.1016/s0168-1605(02)00220-9
https://doi.org/10.4315/0362-028x-66.6.946
Copyright (c) 2014 G. Velázquez Garduño, P. Reyes Reyes, M. D. Mariecurena Berasain, A. T. Guémez Bañez y M. A. Mariecurena Berasain

Este texto está protegido por una licencia Creative Commons 4.0.

Usted es libre para Compartir —copiar y redistribuir el material en cualquier medio o formato— y Adaptar el documento —reemejar, transformar y crear a partir del material— para cualquier propósito, incluso para fines comerciales, siempre que cumpla la condición de:

Atribución: Usted debe dar crédito a la obra original de manera adecuada, proporcionar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que tiene el apoyo del licenciante o lo recibe por el uso que hace de la obra.

Risumen del licencia - Texto completo de la licencia