Validation of azo removal compounds with activated charcoal from shrimp exoskeleton

Authors

  • Verónica López Hernández Ingeniería en Procesos Químicos. Universidad Tecnológica de Gutiérrez Zamora https://orcid.org/0000-0003-1730-656X
  • Oscar Enrique Morales Moguel Ingeniería en Procesos Químicos. Universidad Tecnológica de Gutiérrez Zamora
  • Arsenio Sosa Fomperosa Ingeniería en Procesos Químicos. Universidad Tecnológica de Gutiérrez Zamora
  • Raúl Alejandro Hernández Limón Ingeniería en Procesos Químicos. Universidad Tecnológica de Gutiérrez Zamora
  • Iriana Hernández Martínez Ingeniería en Procesos Químicos. Universidad Tecnológica de Gutiérrez Zamora

DOI:

https://doi.org/10.47808/revistabioagro.v7i2.118

Keywords:

shrimp waste, porous material, adsorption, dyes

Abstract

Activated carbon (CA) is a porous material, whose main precursors are of vegetable origin. These precursors are composed of carbonaceous structures as cellulose. On the other hand, one of the elemental materials to wastewater treatments is activated carbon, due to, it has been dabbled to use precursors such as rubber and animal waste in order to produce activated carbon.  The shrimp exoskeleton is a waste generated in coastal areas and it has significant amounts of chitin. Chitin is a compound considerate the most abundant polymer only after cellulose. Therefore, the objective of the present project was to obtain activated carbon from shrimp exoskeleton residues to remove azo compounds from water samples.  For the experimental part, H3PO4 was used as an activating agent at 20 %, 30 % and 40 %, of concentration, additionally the carbonaceous volume-matter ratio was evaluated. The samples to be treated were solutions of methylene blue at 1000 ppm, in this way adsorption isotherms and kinetics were obtained respect to time and the amount of CA used. The best methylene blue removal percentage obtained was 90.59 % with activated carbon at 20 % of H3PO4, while the physicochemical parameters evaluated in the water samples to be treated showed no significant differences.

Downloads

Download data is not yet available.

References

Atkins, P., De Paula, J. 2006. Physical Chemistry. Octava edición. Univ. de Oxford.

Azevedo, D. C. S., Araújo, J. C. S., Bastos-Neto, M., Torres, A. E. B., Jaguaribe, E. F., y Cavalcante, C. L. 2007. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater. 100(1-3):361-364. https://doi.org/10.1016/j.micromeso.2006.11.024

Belandria, J., y Morillo de Montiel, N. 2008.Recuperación de quitina a partir de los residuos sólidos generados del procesamiento industrial de crustáceos. Revista Cubana de Química. 20(3):17-26.

Castor, R. y Martín, J. 2012. Aplicación de residuos agrícolas para el tratamiento de agua contaminada con colorantes. Universidad Autónoma de Nuevo León.97.

Filippín, A., Luna, N., Pozzi, M. y Pérez, J. 2017. Obtención y caracterización de carbón activado a partir de residuos olivícolas y oleícolas por activación física. Avances en Ciencias e Ingeniería. 8(3):59-71.

Glasstone, S. 1968. Tratado de Química Física. (7th edition), Univ. Oklahoma.

Macia-Agullo, J.A., Moore, B.C., Cazorla- Amoros, D., y Linares-Solano, A. 2004. Activation of coal tar pitch carbon fibres: physical activation vs. Chemical activation. Carbon. 42:1367-1370. https://doi.org/10.1016/j.carbon.2004.01.013

Moreno-Castilla, C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon. 42:83-94. https://doi.org/10.1016/j.carbon.2003.09.022

Mozia, S., Tomaszewska, M., y Morawski, W. 2005. Studies on the effect of humic acids and phenols on adsorption-ultrafiltration process performance. Water Research. 39(1-2):501-509. https://doi.org/10.1016/j.watres.2004.10.012

Nevskaia, D.M., Castillejos-López, E., Guerrero-Ruiz, A., y Muñoz, A. 2004. Effects of the surface chemistry of carbons materials on the adsorption of phenol-aniline mixtures from water. Carbon. 42(3):653-665. https://doi.org/10.1016/j.carbon.2004.01.007

Rodríguez, R., Linares, R., y Guadalupe, E. 2009. Adsorción y desorción de crom hexavalente en relaves mineros. Revista del Instituto de Investigaciones FIGMMG. España. 24(12):108-117.

Tseng, R. L. 2006. Mesopore control of high surface area NaOH-activated carbon. J. Coll. Sci. Imp. U. Tok. 303:494-502. https://doi.org/10.1016/j.jcis.2006.08.024

Youssef, M., Radwan, N. R. E., Abdel-Gawad, I., y Singer, G. A. A. 2005. Textural properties of activated carbons from apricot stones colloids surfaces a physicochem. Eng. Asp. 252 (2-3):143-151. https://doi.org/10.1016/j.colsurfa.2004.09.008

Published

2019-12-31

How to Cite

López Hernández, V., Morales Moguel, O. E., Sosa Fomperosa, A., Hernández Limón, R. A., & Hernández Martínez, I. (2019). Validation of azo removal compounds with activated charcoal from shrimp exoskeleton. Revista Biológico Agropecuaria Tuxpan, 7(2), 241–250. https://doi.org/10.47808/revistabioagro.v7i2.118

Issue

Section

Original Research Papers