Efficiency of indirect selection in maize for future environment by climate change

Authors

  • C. A Ramírez Mandujano
  • J. C González Cortés
  • A. Ávila Bautista
  • A. A Hernández Esquivel

DOI:

https://doi.org/10.47808/revistabioagro.v4i1.23

Keywords:

zea mays, climate change, indirect selection response

Abstract

In the Central Mexican Plateau are planted in March and April, more than 800 thousand ha of maize with residual moisture and more than 650 thousand ones under rainfed condition in June. We can predict that residual moisture will disappear by climate change and the entire surface will need to be planted under rainfed. There are many works on maize breeding in residual moisture, and we can ask ourselves if the currently reached advancement by selection will be useful when being forced to postpone the date of sowing. 40 families of half SIBS of a Creole improved population in both

environments were evaluated. Was measured days to masculine and femenine flowering and anthesis-silking interval, long and basal width of the leaf of the main ear, number of leaves above and below the ear, cob height, plant height and ear weight in 8 plants of every family and every repetition. We estimated heritability, genetic correlation, response to direct selection in residual humidity and indirect selection in rainfed environment. Genetic correlation between both environments was positive for all variables, except ear weight. Heritability values were higher in the residual moisture environment for days to masculine and femenine flowering, number of leaves, plant and ear height, and lower for the rest, except floral asynchrony. Selection in residual moisture will cause changes in the same direction when move the population to the rainfed environment, except for ear weight.

Downloads

Download data is not yet available.

References

Arellano-Vázquez, J.L.; Virgen-Vargas J.; Rojas-Martínez, I.; Ávila-Perches, M.A. 2011. H-70: híbrido de maíz de alto rendimiento para temporal y riego del altiplano central de México Rev. Mex. de Ciencias Agrícolas 2(4): 619-626.

https://doi.org/10.29312/remexca.v2i4.1651

Atif, E.I.; Atif, I.A. 2011. Genetic Variability For Vegetative and Yield Traits in Maize (Zea Mays L.) International Research Journal of Agricultural Science And Soil Science. 1(10): 408-411.

Atlin, G.N.; Cooper M.; Å. Bjørnstad. 2001.A comparison of formal and participatory breeding approaches using selection theory. Euphytica 122(3):463-475.

https://doi.org/10.1023/A:1017557307800

Badu-Apraku, B.; Akinwale, R.O.; Facorede, M.A.B.; Oyekunle, M.; Franco, J. 2012. Relative changes in genetic variability and correlation in an early-maturing maize population during recurrent selection. Theor appl genet (2012)125:1289-1301

https://doi.org/10.1007/s00122-012-1913-8

Bänziger, M; Betrán, F. J.; Lafitte, H. R. 1997. Efficiency of High-Nitrogen Selection Environments for Improving Maize for Low-Nitrogen Target Environments. Crop Sci. 37(4): 1103-1109

https://doi.org/10.2135/cropsci1997.0011183X003700040013x

https://doi.org/10.2135/cropsci1997.0011183X003700040012x

Bolaños, J.; Edmeades G.O. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1):65-80.

https://doi.org/10.1016/0378-4290(96)00036-6

Cervantes-Ortiz, F.; García de los Santos, G.; Carballo-Carballo, A.; Bergvinson, D.; Crossa, J.L.; Mendoza-Elos, M.; Moreno-Martínez, E. 2007. Herencia del vigor de plántula y su relación con caracteres de planta adulta en líneas endogámicas de maíz tropical. Agrociencia 41: 425-433.

Cruz,M. 2010. Comparación del ciclo agrícola actual con el de hace unos diez años en San Juan Jalpa municipio San Felipe del Progreso, Estado de México: evidencia de adaptación al cambio climático. Ra Ximhai 7(1):95-106.

https://doi.org/10.35197/rx.07.01.2011.09.mc

Dijak, M.; Modarres, A.M.; Hamilton, R.I.; Dwyer, L.M.; Stewart, D.W.; Mather, D.E.; Smith, D.L. 1999. Leafy Reduced- Stature Maize Hybrids for Short-Season Environments. Crop Sci. 39(4):1106-1110.

https://doi.org/10.2135/cropsci1999.0011183X003900040025x

Falconer, D.S.; Mackay, T.F.C. 1996.Introduction to Quantitative Genetics. 4.ed. England. Longman, 1996.464 p.

Fountain, M.O.; Hallauer, A.R. 1996. Genetic variation within maize breeding populations. Crop Science 36 : 26-32.

https://doi.org/10.2135/cropsci1996.0011183X003600010005x

Hallauer, A.R.; Miranda, J.B. 1988. Quantitative genetics in maize breeding. 2ª Ed. Iowa State University Prees. Ames, Io. 468 pp.

Kebede, A.Z.; Mahuku, G.; Burgueño, J.; San Vicente, F.; Cairns, J.E.; Das, B.; Makumbi, D.; Magorokosho, C.; Windhausen, V.S.; Melchinger, A.E.; Atlin, G.N. 2013. Effectiveness of selection at CIMMYT's main maize breeding sites in Mexico for performance at sites in Africa and vice versa. Plant Breeding 132: 299-304

https://doi.org/10.1111/pbr.12063

Márquez-Sánchez, F.; Sahagún-Castellanos J.1994. Estimation of genetic variances with maternal half-sib families. Maydica 39: 197-201.

Muhamad, Y.; Muhamad, S. 2002. Estimates of heritability for some quantitative characters in maize. International journal of agriculture & biology 4(1):103-104.

Peña L.A.; Molina, G.J.D.; Márquez, S.F.; Sahagún, C.J.; Ortiz, C.J.; Cervantes, S.T. 2002. Respuestas estimadas y observadas de tres métodos de selección en tomate de cáscara (Physalis ixocarpa Brot.) Revista Fitotecnia Mexicana 25:171-178.

Ruiz, C.A.; Ramírez, J.L.; Flores, F.J.; Sánchez J.J. 2000. Cambio climático y su impacto sobre la estación de crecimiento de maíz en Jalisco, México. Fitotecnia Mexicana 23(2): 169-181.

Sáenz-Romero, C.; Rehfeldt, G.E.; Crookston, N.L.; Duval, P.; Beaulieu, J. 2012. Spline models of contemporary, 2030, 2060 and 2090 climates for Michoacán state, México. Impacts on the vegetation. Fitotecnia Mexicana 35(4):333-345.

https://doi.org/10.35196/rfm.2012.4.333

SAS Institute. 2003. SAS version 9.1.3 for Windows. SAS Institute, Inc. Cary, NC.

Servicio Meteorológico Nacional (SMN). 2012.

http://smn.cna.gob.mx/climatologia/Est adistica/16171.pdf. (Consultado el 16 de abril de 2012).

Sistema de Información Agroalimentaria y Pesquera (SIAP). 2015. Anuario Agropecuario 1980-2009. http://www.siap.gob.mx/cierre-de-la- produccion-agricola-por-cultivo/ Consulta: junio 24, 2015.

Smalley, M.D.; Daub, J.L.; Hallauer, A.R. 2004. Estimation of heritability in maize by parent - offspring regression. Maydica 49(3): 221-229.

Soleri, D.; Smith, S.E. 2002. Rapid estimation of broad sense heretability of farmer- managed maize population in the central valley of Oaxaca, México, and implications for improvement. Kluwer Academic Publishers. Netherlands. Euphytica 128: 105-119.

https://doi.org/10.1023/A:1020647813017

Windhausen, V.S.; Wagener, S.; Magorokosho, C.; Makumbi, D.; Vivek, B.; Piepho, H.-P.; Melchinger, A.E.; Atlin G.N.. 2012. Strategies to Subdivide a Target Population of Environments: Results from the CIMMYT-Led Maize Hybrid Testing Programs in Africa. Crop Sci. 52(5):2143-2152.

https://doi.org/10.2135/cropsci2012.02.0125

Published

2016-06-30

How to Cite

Ramírez Mandujano, C. A., González Cortés, J. C., Ávila Bautista, A., & Hernández Esquivel, A. A. (2016). Efficiency of indirect selection in maize for future environment by climate change. Revista Biológico Agropecuaria Tuxpan, 4(1), 88–93. https://doi.org/10.47808/revistabioagro.v4i1.23

Issue

Section

Original Research Papers

Most read articles by the same author(s)