Determination cadmium bioacumulation capacity in Vicia faba L. and his effect on vegetative growth and the root

Authors

  • María Yesenia Sánchez Zepeda Universidad Tecnológica de Tecamac, Tecamac, Estado de México
  • Maritza López Herrera Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas
  • Leticia Romero Bautista Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas

DOI:

https://doi.org/10.47808/revistabioagro.v9i2.358

Keywords:

Cadmium Vicia faba, bioacumulation

Abstract

In order to contribute to the use of broad beans to evaluate bioaccumulation and biological effect associated with exposure to cadmium, bioaccumulation and the effect of cadmium on growth and biomass gain in broad bean plants (Vicia faba L.) var. Major in root, stem and leaf samples, developed in hydroponic cultivation and exposed to a CdSO4 concentration of 0.112 ppm; The results show that the exposure to cadmium generated a statistically significant decrease in the growth of the vegetative part, in the length of the root and in the biomass production in the plants subjected to the pollutant; the root was an organ where most of the cadmium accumulated followed by leaves and stem. The roots showed a darkening and thickening. The oxidative damage alters the functioning of the root tissue, affecting the absorption of nutrients, generating a poor development of the plants subjected to the pollutant. Evidenced that the biological responses of growth and root symptoms can be good biomarkers of toxicity for plants.

Downloads

Download data is not yet available.

References

Adrees, M., Ali, S., Iqbal, M., Bharwana, S.A., Siddiqi, Z., Farid, M., Ali, Q., Saeed, R., Rizwan, M., 2015. Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicology and Environmental Safety 122: 1–8.

https://doi.org/10.1016/j.ecoenv.2015.07.003

Ahmad, P., Nabi, G., Ashraf, M., 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany 77: 36–44.

https://doi.org/10.1016/j.sajb.2010.05.003

Almagro, L., Segura-Reinaldos A.M., Pedreño M.A.,Bernal M.P.2015. Tolerancia y acumulación de metales pesados y As en diferentes especies de Cistus L.Anales de Biología 37:143-153.

https://doi.org/10.6018/analesbio.37.16

Añazco, K.V.R. 2019. Efecto del cadmio sobre la germinación y crecimiento de Lens culinaris Medik. (Lenteja), Oryza sativa (Arroz) y Phaseolus vulgaris L. (Frejol). Tesis de Licenciatura, Universidad de Guayaquil, Colombia. 89 p.

Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M., Irshad, M.K. 2015. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science.

http://dx.doi.org/10.1080/03650340.2015.1064903

Belz, R., Patama, M. y Sinkkonen, A. 2018. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa. Science of the Total Environment, 510-523. http://dx.doi.org/10.1016/j.scitotenv.2018.02.336

Benavides, M.P., Gallego, S.M., Tomaro, M. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17: 21–34.

Chávez, E., He, Z., Stoofella, P., Mylavarapu, R., Li, Y. y Moyano, B. 2015. Concentration of cadmium in cacao beans and its relationshio with soil cadmium en southern Ecuador. Science of the Total Environment, 533: 205-214.

http://dx.doi.org/10.1016/j.scitotenv.2015.06.106

Espanany, A., Fallah, S., Tadayyon, A. (2015). Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Industrial Crops and Products.

http://dx.doi.org/10.1016/j.indcrop.2015.11.016

Farooq, M.A., Ali, S., Hameed, A., Bharwana, S.A., Rizwan, M., Isgaque, W., Farid, M., 2016. Cadmium stress in cotton seedling: physiological, photosynthesis and oxidative damage alleviated by glicinbetaine. South African Journal of Botany, 104: 61-68.

https://doi.org/10.1016/j.sajb.2015.11.006

García, E. G., García, E. N., Juárez, L. F. S., Juárez, L.S., Montiel, J. M. R. G., Gómez, M. A. C. 2012. La respuesta de haba (Vicia faba L.) cultivada en un suelo contaminado con diferentes concentraciones de cadmio. Revista Internacional de Contaminación Ambiental 28 (2): 119-126.

He, J. Y., Ren, Y.F., Hu, C.Z., Yan, Y. P., Jiang, D.A. 2008. Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd sensitive mutant rice. Photosynthetica 46: 466-470.

https://doi.org/10.1007/s11099-008-0080-2

Hediji, H., Djebali, W., Belkadhi, A., Cabasso, C., Moing, A., Rolin, D., Brouquiss, R., Gallusci, P., Chaïbi, W. 2015. Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. South African Journal of Botany 97: 176–181.

https://doi.org/10.1007/s00425-014-2220-1

Keller, C., Rizwan, M., Davidian, J.C., Pokrovsky, O.S., Bovet, N., Chaurand, P., Meunier, J.D. 2015. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics under Cu stress. Planta 241, 847–860.

https://doi.org/10.1007/s00425-014-2220-1

Kurtyka, R.; Małkowski, E.; Kita, A.; Karcz, W. 2008. Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Polish J. Environ. Stud., 17: 51–56.

Leita, L., de Nobili, M., Cesco, C., Mondini, C. 1996. Analysis of intercellular cadmium forms in roots and leaves of bush bean. Journal Plant Nutrition, 19: 527–533.

https://doi.org/10.1080/01904169609365140

Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V., Prasad, M.N.V. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology Biochemistry, 44: 25–37.

https://doi.org/10.1016/j.plaphy.2006.01.007

Méndez-Hurtado, A., Rangel-Mendez, R., Yáñez-Espinoza, L., Flores, J. 2013. Tolerance cadmium of agave lechuguilla (Agavaceae) seeds and seedlings from sites contaminated with heavy metals. The Scientific World Journal. Article ID 167834, 11 pages. doi:10.1155/2013/167834

Navarro-Aviña, J.P., Aguilar, I.A., López-Moya, J.R. 2007. Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas, 16(2): 1-17.

Norma Oficial Mexicana (NOM-001-ECOL- 1996). Establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Secretaría de Medio Ambiente, Recursos Naturales, DOF 06/01/1997. http://dof.gob.mx/nota_detalle.php?codigo=4863829&fecha=06/01/1997. Consultado: 25 de febrero 2018.

Pedrosa, G. M., Lara Lanza de Sá e Melo Marques, T. C., Goncales, N. M de O., De Castro, E. M., Soares, A. M. 2011. Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiria decumbens. Science Agricola 68(5) p. 566-573.

https://doi.org/10.1590/S0103-90162011000500009

Pernía, B. 2013. Respuestas a la exposición al cadmio y su tasa de acumulación en plantas de Amaranthus lividus, Phaseolus vulgaris y Wedelia trilobata (Tesis doctoral). Universidad Simón Bolívar, Caracas, Venezuela.

https://doi.org/10.1590/S0103-90162011000500009

Pramanik, K., Mitra, S., Sarkar, A., Kanti, T. 2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials.

https://doi.org/10.1016/j.jhazmat.2018.03.009

Prieto, M. J., González, R. C. A., Román, G. A. D., Prieto, G. F. 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10, 29-44.

Rizwan, M., Meunier, J.D., Davidian, J.C., Pokrovsky, O.S., Bovet, N., Keller, C. 2015. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research http://dx.doi.org/10. 1007/s11356-015-5351-4

Rodríguez, M., Martínez, N., Romero, M., Del Río, L., Sandalio, L. 2008. Toxicidad del cadmio en plantas. Ecosistemas, 17(3), 139-146.

Rodríguez-Serrano, M.; Romero-Puertas, M.C.; Pazmiño, D.M.; Testillano, P.S.; Risueño, M.C., del Río, L.A., Sandalio, L.M. 2009. Cellular response of pea plants to cadmium toxicity: Cross.

talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150: 229–243.

https://doi.org/10.1104/pp.108.131524

Saidi, I., Ayouni, M., Dhieb, A., Chtourou, Y., Chaïbi, W., Djebali, W. 2013. Oxidative damages induced by short-term exposure to cadmium in bean plants: Protective role of salicylic acid. South African Journal of Botany 85: 32–38.

https://doi.org/10.1016/j.sajb.2012.12.002

Sharma, P., Bhushan, A.J., Dubey, R.S., Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany.

https://doi.org/doi:10.1155/2012/217037

Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Basalah, M.O., Ali, H.M. 2012. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Journal Molecular Science, 13: 6604-6619.

https://doi.org/10.3390/ijms13066604

Souguir, D., Ferjani, E., Ledoigt, G., Goupil, P. 2011. Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots. Ecotoxicology, 20: 329-336.

https://doi.org/10.1007/s10646-010-0582-0

Zhang, F.Q., Zhang, H.X., Wang, G.P., Xu, L.L., She, Z.G. 2009. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. Journal of Hazardous Materials 168: 76–84.

https://doi.org/10.1016/j.jhazmat.2009.02.002

Published

2021-12-01

How to Cite

Sánchez Zepeda, M. Y., López Herrera, M., & Romero Bautista, L. (2021). Determination cadmium bioacumulation capacity in Vicia faba L. and his effect on vegetative growth and the root. Revista Biológico Agropecuaria Tuxpan, 9(2), 46–60. https://doi.org/10.47808/revistabioagro.v9i2.358

Issue

Section

Original Research Papers

Similar Articles

You may also start an advanced similarity search for this article.