Ocular structure of the Callinectes sapidus

Authors

  • José Ricardo Barradas-Barradas Instituto de Neuroetología, Universidad Veracruzana
  • Elizabeth Valero-Pacheco Facultad de Biología, Campus Xalapa, Universidad Veracruzana
  • Luis Gerardo Abarca-Arenas Instituto de Investigaciones Biológicas, Universidad Veracruzana
  • Fernando Álvarez-Noguera Colección Nacional de Crustáceos, Instituto de Biologia, Universidad Nacional Autonoma de Mexico
  • Mayvi Alvarado-Olivarez Instituto de Neuroetología, Universidad Veracruzana

DOI:

https://doi.org/10.47808/revistabioagro.v11i2.494

Keywords:

Pigment Cells, Cornea, Cone, Ommatidium, Rhabdomyoma

Abstract

The crab Callinectes sapidus, inhabiting tropical and temperate coasts, in the waters of bays, coastal lagoons, estuaries and river mouths. They are omnivorous, benthic, opportunistic, active and voracious. It is suggested that the eyes of this species are of the overlapping type, as they are nocturnal organisms, which allows them to find food and a mate during this period. However, your eyes are subject to a water column and different salinity gradients, along with exposure to different intensities of moonlight. This study consisted of describing the internal structure of the eye of the Callinectes sapidus to determine if it corresponded to the appositional compound eye. The collection of organisms was carried out in Laguna de La Mancha, Actopan Veracruz, Mex., collecting 60 organisms, which were fixed in Bouin. Ocular tissue was submitted to histological techniques, stained with Hematoxylin & Eosin. As a result, it was found that each ommatidium is composed of four structures: cornea, lens, rhabdomyoma and basement membrane. The cornea is thin and in turn is divided into two layers. The lens, made up of four organized cells, in the cone shape. The rhabdomyoma is composed of seven long, longitudinally aligned rhabdomeric cells. The deep portion of the rhabdomyoma is associated with the basement membrane. The bundled nerve fiber endings for each rhabdomeric cell are distributed at this junction site of the rhabdomyobasal membrane. Conclusion: the structural organization of ommatidia of the Callinectes sapidus includes an eye of the overlapping type characteristic of nocturnal organisms.

Downloads

Download data is not yet available.

References

Alkaladi A, How M, Zeil J. 2013. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms. J Comp Physiol A 199: 99- 113.

https://doi.org/10.1007/s00359-012-0771-9

Bernard, G. D. y W. H. Miller. 1968. Interference filters in the corneas of diptera. Investigative Opthalmology, 7(4):416 - 434.

Chen, Q-X., y B-Z Hua. 2016. Ultrastructure and Morphology of Compound Eyes of the Scorpionfly Panorpa dubia (Insecta: Mecoptera: Panorpidae). PLoS ONE, 11(6):1-13.

https://doi.org/10.1371/journal.pone.0156970

Eguchi, E., Waterman, T.H. 1973. Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch 137, 145-157. https://doi.org/10.1007/BF00307426

https://doi.org/10.1007/BF00307426

Exner, S. 1891. The Physiology of the Compound Eyes of Insects and Crustaceans. Transl. R. C. Hardie, 1989. Berlin: Springer. 177 pp. (From German)

https://doi.org/10.1007/978-3-642-83595-7

Fonte, A. 2012. Los artrópodos. Cambridge University Press, 1-10.

INEGI. 2017. Marco Censal agropecuario. Instituto Nacional de Estadística y Geografía. Recuperado el 13 de abril, 2017 de http://gaia.inegi.org.mx/mdm6

Krebs W, Lietz R. 1982. Apical region of the crayfish retinula. Cell Tissue Res. 222(2):409-15. doi: 10.1007/BF00213221. PMID: 7083309.

https://doi.org/10.1007/BF00213221

Kunze P. 1967. Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z Zellforsch Mikr Anat 82: 466- 478.

https://doi.org/10.1007/BF00337118

Land, M. F. 1972. The physics and biology of animal reflectors. Pp. 75 -106. In: Butler, 1. A. V. & Noble, D. (ed). Progress in Biophysics and Molecular Biology. Pergamon Press. Oxford and New York.

https://doi.org/10.1016/0079-6107(72)90004-1

Land, M. F. 1981. Optics and vision in invertebrates. In: Autrum, H (ed) Handbook of sensory physiology, Vol. VII/6B. Springer, Berlin, Heidelberg, New York, pp 471-592.

https://doi.org/10.1007/978-3-642-66907-1_4

Land, M. F. 1981. Optics of the eyes of Phronima and other deep-sea amphipods. Journal of Comparative Physiology A, 145: 209-226.

https://doi.org/10.1007/BF00605034

Layne J, Land MF, Zeil J. 1997. Fiddler crabs use the visual horizon to distinguish predators from conspecifics: a review of the evidence. J Mar Biol 77: 43- 54.

https://doi.org/10.1017/S0025315400033774

Luna, L.G. 1958. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3a. Ed. Mc.-Graw Hill Co. New York. 258 p.

Meyer-Rochow, VB 2001. El ojo de los crustáceos: adaptación a la luz y la oscuridad, sensibilidad a la polarización, frecuencia de fusión del parpadeo y daño a los fotorreceptores. Ciencia zoológica, 18(9):1175-1197.

https://doi.org/10.2108/zsj.18.1175

Meyer-Rochow, VB, Walsh, S. 1978. Los ojos de los crustáceos mesopelágicos. Res. de tejido celular. 195, 59-79.

https://doi.org/10.1007/BF00233677

Miller, WH, GD Bernard y JL Allen. 1968. La óptica del ojo compuesto de insectos. Ciencia, 162:760-767.

https://doi.org/10.1126/science.162.3855.760

Mishra, M. 2013. Investigación de la ultraestructura ocular de Scaphidium japonum Reitter (Coleoptera: Staphylinidae: Scaphidiidae). Revista de estudios de entomología y zoología, 1(2):8-16.

Ortiz-León HJ, A. Navarrete & E. Sosa. 2007. Distribución espacial y temporal del cangrejo Callinectes sapidus (Decapoda: Portunidae) en la Bahía de Chetumal, Quintana Roo, México. Rev. Biol. tropo. 55: 235-245.

Rathbun, MJ 1896. El género Callinectes. Actas del Museo Nacional de Estados Unidos. 18(1070): 349-375, pls. XIII-XXVIII.

https://doi.org/10.5479/si.00963801.18-1070.349

Sandeman DC 1967. La circulación vascular en el cerebro, lóbulos ópticos y ganglios torácicos del cangrejo CarcinusProc. R. Soc. Londres. B.16882-90 http://doi.org/10.1098/rspb.1967.0052

https://doi.org/10.1098/rspb.1967.0052

Shaw SR, Stowe S. 1982. Fotorrecepción. En: HL Atwood, DC Sandeman, editores. La biología de los crustáceos, vol III. Nueva York: Academic Press. págs. 292-367.

https://doi.org/10.1016/B978-0-12-106403-7.50016-1

Stimpson, W., 1860. Prodromus descriptionis animalium evertabratorum, quae inexpedie ad Oceanum Pacificum Septentrionalem a Republica Federata missa, Proc. Académico de Filadelfia. Ciencia. págs. 22-47.

Talens, 2008. Ojos simples, ojos compuestos… Todo un mundo de percepciones. Universidad de Valencia. Recuperado el 16 de diciembre, 2015 de http://biogenmol.blogspot.mx/2008/08/ojos-simples-ojos-compuestostodo-un.html

Williams, AB 1974. Los cangrejos nadadores del género Callinectes. Pez. Bol., v. 72, pág. 685-798.

Zeil J, Hemmi JM. 2006. La ecología visual de los cangrejos violinistas. J Comp PhysiolA 192: 1- 25.

https://doi.org/10.1007/s00359-005-0048-7

Published

2023-12-30

How to Cite

Barradas-Barradas , J. R., Valero-Pacheco , E., Abarca-Arenas , L. G., Álvarez-Noguera , F., & Alvarado-Olivarez, M. (2023). Ocular structure of the Callinectes sapidus. Revista Biológico Agropecuaria Tuxpan, 11(2), 124–136. https://doi.org/10.47808/revistabioagro.v11i2.494

Issue

Section

Original Research Papers

Most read articles by the same author(s)