Tecoma stans: variación asociada con la inhibición de la α-glucosidasa para el tratamiento de la diabetes


  • Antonio Álvarez Delgadillo
  • Miguel Ángel Villavicencio Nieto
  • Blanca Estela Pérez Escandón
  • Pablo Octavio Aguilar



Palabras clave:

diabetes, plantas medicinales, α -glucosidasa, diversidad genética, morfometría


Tecoma stans es una planta utilizada en México y América Central para el tratamiento tradicional de la diabetes con un éxito variable dependiendo del origen, el entorno y otras fuentes de variación subyacentes. Para determinar la variación morfológica y genética asociada con una mejor inhibición de la α –glucosidasa, se probaron extractos etanólicos de siete poblaciones, tres silvestres y cuatro cultivos. La variación morfológica y genética se encuentran correlacionadas y ambas difieren significativamente entre poblaciones. La población de El Arenal obtuvo el máximo de actividad inhibitoria y presentó un genotipo particular compartido con dos cultivos que tuvieron una actividad similar, aunque no existen rasgos morfológicos asociados con el potencial antidiabético. Nuestros resultados sugieren un componente genético de la actividad terapéutica asociada con una fuente particular, pero una plasticidad morfológica independiente que podría no ser un indicador de la mejor respuesta terapéutica.


Los datos de descargas todavía no están disponibles.


Abdel-Hamid, T. M., Hosni-Dawood, D., Ibrahim-Sanad, M. y Ahmed-Hassan, R. 2016. Searching for anti hyperglycemic phytomolecules of Tecoma stans. European Journal of Chemistry 7 (4): 397-404.


Aguilar-Santamaría, L., Ramírez, G., Nicasio, P., Alegría-Reyes, C. y Herrera-Arellano, A. 2009. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. Journal of Ethnopharmacology 124: 284-288.


Akinci, S. y Lösel, D.M. 2012. Plant water-stress response mechanisms. Pp. 15-42 in I. M. M. Rahman, H. Hasegawa, Eds. Water stress. InTech, Rijeka, Croatia. Available at http://www.intechopen.com/books/water- stress/plant-water-stress-response- mechanisms (Accessed 15 mayo 2015).


Andrade-Cetto, A. y Heinrich, M. 2005. Mexican plants with hypoglycemic effect used in the treatment of diabetes. Journal of Ethnopharmacology 99(3): 325-348.


C'avar Zeljkovic', S. y Maksimovic', M. 2015. Chemical composition and bioactivity of essential oil from Thymus species in Balkan Peninsula. Phytochemistry Reviews 14:335-352.


Collevatti, R.G., Estolano, R., Lopes-Ribeiro, M., Gongalves-Rabelo, S., Lima, E. J. y Munhoz, C. B. R. 2014. High genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species. Plant systematic and Evolution Doi: 10.1007/s00606-014-0993-0.


CONABIO. 2017. Comisión Nacional de la biodiversidad. http://www.conabio.gob.mx/conocimient o/info_especies/arboles/doctos/12- bigno8m.PDF. Consultada (06-07-2017).

De Micco, V. y Aronne, G. 2012. Occurrence of morphological and anatomical adaptive trait in young and adult plants of the rare Mediterranean Cliff species Primula palinuri Petagna. The Scientific World Journal, Doi: 10.1100/2012/471814.


Dhaked, U., Gupta, V., Singh, D. P. y Nama, G. 2011. Antidiabetic activity of Tecoma stans flower. Pharmacology Online 1:553-558.

Elosh, G., Palanivel, V. y Senthil-Kumar, K. L. 2013. Evaluation of anti-diabetic activity of Tecoma stans stem extract in induced diabetic albino rats. International Journal of Innovative Pharmaceutical Research 4(3): 337-341.

Elya, B., Basah, H., Min'Im A, Yuliastuti, W., Bangun, A. y Septiana, E. K. 2012. Screening of α-glucosidase inhibition activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of Biomedicine and Biotechnology, Doi: 10.1155/2012/281078


Falush, D., Stphens, M. y Pritchar, J. K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567-1587.

Ferrer, M. M., Eguiarte, L. E. y Montaña, C. 2004. Genetic structure and outcrossing rate in Flourensi cernua (Asteraceae) growing at different densities in the South- western Chihuahuan desert. Annals of Botany 94: 419-426.


Garber, A. J., Duncan, T. G., Goodman, A. M., Mills, D. J. y Rohlf, J. L. 1997. Efficacy of metformin in type II diabetes: Results of a double-blind, placebo-controlled, dose- response trial. American Journal of Medicine 103(6): 491-497.


Giovannini, P., Howes, M. J. R. y Edwards, S. E. 2016. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. Journal of Ethnopharmacology 184: 58-71.


Gnanasekaran, N., Ruban John, J., Sakthivel, G. y Kalavathy, S. 2017. The comparative studies of the phytochemical levels and the in vitro antioxidant activity of Tridax procumbens L. from diferent habitats. Free Radicals and Antioxidants 7(1): 50-56.


Goudet, J. 2001. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3. http://www.unil.ch/izea/softwares/fstat.ht ml Updated from Goudet (1995).

Govindappa, M., Sadananda, T.S., Channabsavar, R. y Raghavendra, V.B. 2011. In vitro anti-inflammatory, lipoxygenase, xanathine oxidase and acetycholinesterase inhibitory activity of Tecoma stans (L.) Juss. ex Kunth. International Journal of Pharma and Bio Sciences 2(2): 275-285.

Hernández-Galicia, E., Aguilar-Contreras, A., Aguilar-Santamaria, L., Roman-Ramos, R., Chavez-Miranda, A. A., García-Vega, L. M. y Alarcón-Aguilar, F. J. 2002. Studies on hypoglycemic activity of Mexican medicinal plants. Proceedings of the West Pharmacology Society 45:118-124.

Hong-Lian, A., Wang, H., De-Zhu, L. y Jun-Bo, Y. 2009. Isolation and characterization of 13 microsatellite loci from Incarvillea mairei (Bignoniaceae), an endemic species to the Himalaya-Hengduan mountains region. Conservation Genetic 10: 1613-1615.


Huttuen, L., Saravesi, K., Markkola, A. y Niemelä, P. 2013. Do elevations in temperature, CO2 and nutrient availability modify belowground carbon gain and root morphology in artificially defoliate silver birch seedlings? Ecology and Evolution 3(9): 2783-2794.


Jones, F. A. y Hubbell, S. P. 2003. Isolation and characterization of microsatellite loci in the tropical tree Jacarand copaia (Bignoniaceae). Molecular Ecology Notes 3: 403-405.


Kameshwaran, S., Suresh, V., Arunachalam, G., Kanthlal, S.K. y Mohanraj, M. 2012. In vitro and in vivo anticancer activity of methanolic extract of Tecoma stans flowers. International Research Journal of Pharmacy 3(3): 246-251.

Kameshwaran, S., Jothimanivannan, C., Senthikumar, R. y Kothai, A. R. 2013. Anti-obesity and hypolipidemic activity of methanol extract of Tecoma stans flowers on atherogenic diet induced obesity in rats. Pharmacologia 4(2): 77-81.


Marzouk, M., Gamal-Eldeen, A., Mohamed, M. y El-Sayed, M. 2006. Anti-proliferative and antioxidant constituents from Tecoma stans. Zeitschrift für Naturforschung Online 61c: 783-791.

Mopper, S., Mitton, JB., Whitham, TG., Cobb, NS. y Christensen, KM. 1991. Genetic differentiation and heterozygosity in pinyon pine associated with resistance to herbivory and environmental stress. Evolution 45: 989-999.


Moreira, P. A., Fernandes, G. W. y Collevatti, R. G. 2009. Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry neotropical tree. Forest Ecology and Management 258(12): 2690-2695.


Nasri, H. y Rafieian-Kopaei, M. 2014. Metformin: Current knowledge. Journal of Research in Medical Sciences 19(7): 658-664.

Nevo, E. y Beiles, A. 1989. Genetic diversity in the desert: patterns and testable hypotheses. Journal of Arid Environments 17: 241-244.


Patel, D. K., Kumar, R., Laloo, D. y Hemalatha, S. 2012. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pacific Journal of Tropical Biomedicine 2(5): 411-420.


Pelton, J. 1964. A Survey of the Ecology of Tecoma stans. Butler University Botanical Studies: Vol. 14, Article 11

Radušienė, J. 2007. Conservation and evaluation of selected medicinal and aromatic plants from Lithuania. Journal of Plant Science and Biotechnology 1(1): 98-106.

Rainey, D. Y., Mitton, J. B. y Monson, R. K. 1987. Associations between enzyme genotype and dark respiration in perennial ryegrass, Lolium perenne L. Oecologia 74: 335-338.


Ramanatha-Rao, V. y Hodgkin, T. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant cell, Tissue and Organ Culture 68: 1-19.


Roig, J.T. 1988. Plantas medicinales aromáticas y venenosas de Cuba. La Habana. Editorial Científico-Técnica. 846-8.

Román-Ramos, R., Flores-Sáenz, J. L., Partida- Hernández, G., Lara-Lemus, A. y Alarcón- Aguilar, F. 1991. Experimental study of the hypoglycemic effect of some antidiabetic plants. Archivos de Investigación Médica 22(1): 87-93.

Rzedowski, J. y Calderón de Rzedowski, G. 1993. Bignoniaceae. Flora del Bajío y de Regiones Adyacentes. Fascículo 22. 44 pp.

Sánchez-Hernández, C. y Gaytán-Oyarzún, J. C. 2006. Two mini-preparation protocols to DNA extraction from plants with high polysaccharide and secondary metabolites. American Journal of Biotechnology 5(20): 18864-1867.

SAS 2007. JMP statistics and graphics guide, SAS Institute, Cary, North Carolina, USA.

Scully, T. 2012. Diabetes in numbers. Nature 485: S2-S3.


Shanmukha, I., Abubaker, S., Prabhu, K. y Ramachandra-Setty, S. 2012. Effect of Tecoma stans leaves extract on experimentally induced renal injury in various animal models. American Journal of Pharm Tech Research 2(6): 779-809.

Silva, C. I., Solange, C. A., Silva, H. S. y Muscheta, I. S. 2007. Diversidade de abelhas em Tecoma stans (L.) Kunth (Bignoniaceae): importancia na polinizacao e producao de frutos. Neotropica Enthomology 36(3): 331-341.


Singab, A. N., Youssef, F. S. y Ashour, M. L. 2014. Medicinal Plants with Potential Antidiabetic Activity and their Assessment. Medicinal and Aromatic Plants 3(1): 151-163.

Standley, P.C. 1926. Trees and Shrubs of Mexico. United States National Herbarium. Volume 23. Smithsonian Institution. Washington. 1721 pp.

Steentoft, M. 1988. Flowering plants in west Africa. Cambridge University Press, New York, New Rochelle, Melbourne, Sydney. Pp.144.


Suárez, F. 1996. Reconciliación con la naturaleza. Avances en Medicina 3(7):56.

Szakiel, A. Pączkowski, C. y Henry, M. 2011. Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews 10:471-491.



Vogel, H., Razmilic Bonilla, I., Polanco González, X. y Letelier-Muñoz, M.E. 2010. Effect of different provenances and production conditions on antioxidant properties in Buddleja globosa leaves. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9(5): 333-342.

Zhang, Q. D., Jia, R. Z., Meng, C., Ti, C. W. y Wang, Y. L. 2015. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data. AoB PLANTS 7: plv103; Doi:10.1093/aobpla/plv103.





Cómo citar

Álvarez Delgadillo , A., Villavicencio Nieto , M. Ángel, Pérez Escandón , B. E., & Octavio Aguilar , P. (2018). Tecoma stans: variación asociada con la inhibición de la α-glucosidasa para el tratamiento de la diabetes. Revista Biológico Agropecuaria Tuxpan, 6(1), 121–132. https://doi.org/10.47808/revistabioagro.v6i1.145




Artículos más leídos del mismo autor/a