Calidad de la leche de vaca en una zona de riego del estado de Puebla

Autores/as

  • Numa Pompilio Castro González
  • Rafael Moreno Rojas
  • Francisco Calderón Sánchez
  • Ramiro Escobar Hernández
  • Benjamín Barrios Díaz

DOI:

https://doi.org/10.47808/revistabioagro.v4i1.16

Palabras clave:

metales pesados, leche, cadena alimenticia, suelos contaminados

Resumen

El objetivo fue determinar la calidad de la leche cruda en base a su composición y a la posible contaminación con metales pesados por la ingestión de alfalfa (Medicago sativa) cultivada en suelos que son irrigados con aguas del canal de riego de Valsequillo en el estado de Puebla. Se muestrearon suelo agrícola, alfalfa y 136 vacas de las cuales se tomaron dos muestras de leche directamente de la ubre, siendo una muestra para calidad en cuanto a su composición y la otra para contenido de metales pesados  (Cd,  Pb,  Cr  y  Zn).  Para  el  análisis  estadístico  se  utilizó  un  GLM  mediante  el  paquete estadístico  SAS.  En  este  trabajo  de  encontró  diferencia  p<0.0001  entre  las  diferente  matrices analizadas, existiendo una concentración mayor en suelo manifestando el siguiente orden decreciente; Pb> Cr> Zn> Cd, (38; 31.38; 22.78: 2 mg kg-1), seguida de la planta, que tuvo niveles altos. En relación a la leche la concentración promedio obtenida de Pb fue 0.13 mg kg-1. Además de encontrar niveles considerables de Cd, Cr y Zn. En relación la composición de la leche no existió p>0.05 entre el tipo de productores, siendo de manera general una leche con bajo porcentaje en grasa. Por tanto se concluye que la leche producida en la región de estudio presenta baja calidad en cuanto a su contenido y considerable nivel de contaminación con metales pesados lo que representa un riesgo para la salud de sus consumidores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Othman Z.A., Naushad, M, Khan M.R., Wabaidur S.M. 2012. A comparative study on characterization of aluminium tungstate and surfactant based aluminum tungstate cation exchangers: analytical applications for the separation of toxic metal ions. J. Inorg. Organomet. Polym. 22, 352-359.

https://doi.org/10.1007/s10904-011-9594-3

Álvarez-Fuentes G., Herrera-Haro J. G, Alonso- Bastida G., Barreras-Serrano A. 2012. Calidad de leche cruda en unidades de producción al sur de la Ciudad de México. Arch. Med. Vet. 44:237-242.

https://doi.org/10.4067/S0301-732X2012000300005

Aslam B., Ijaz Javed, Faqir Hussain Khan, and Zia Ur Rahman. 2011. "Uptake of Heavy Metal Residues from Sewerage Sludge in the Milk of Goat and Cattle during Summer Season." Pakistan Veterinary Journal 31: 75-77.

ATSDR. Toxicological profile for lead. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. 2007 [citado 01 de abril 2013]. Disponible en: URL:http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=15

Bobić T., Mijić, P., Gregić, M., Ivkić, Z., Baban, M. 2013. The influence of ordinal number and stage of lactation on milkability traits in Holstein cows, Mljek-arstvo 63 (3), 172-179.

Buechler S.J., Devi, G., Raschid-Sally, L., 2002. Livelihoods and wastewater irrigated agriculture along the Musi River in Hyderabad City, Andhra Pradesh, India. U. A. Magazine 8, 14-17.

Chary N S., C T Kamala, and D Samuel Suman. 2008. "Assessing Risk of Heavy Metals from Consuming Food Grown on Sewage Irrigated Soils and Food Chain Transfer" 69: 513-24. doi:10.1016/j.ecoenv.2007.04.013.

https://doi.org/10.1016/j.ecoenv.2007.04.013

Diario oficial de la Unión Europea disponible en http://eur-lex.europa.eu/legal- content/ES/TXT/PDF/?uri=OJ:L:2014:104:FULL&from=ES, 07 de junio de 2015.

Ducháček J., Stádník, L., Ptáček, M., Beran, J., Okrouhlá, M., Čítek, J., Stupka, R. 2014. Effect of cow energy status on hypercholesterolemic fatty acids proportion in raw milk, Czech Journal of Food Science 32 (3), 273-279.

https://doi.org/10.17221/360/2013-CJFS

Doreaa J. G. y Donangelo C. M. 2006. Early (in uterus and infant) exposure to mercury and lead. Clinical Nutrition 25, 369-376.

https://doi.org/10.1016/j.clnu.2005.10.007

FAO. 2014. CODEX STAND 193-195. Disponible en: http://www.fao.org/fileadmin/user_uplo ad/livestockgov/documents/CXS_193s.p df

Gulson B.L., K.J. Mizon., M.J. Korsch. & D. Howarth. 1996. Non-orebody sources are significant contributors to blood lead of some children with low to moderate lead exposure in a mayor mining community. The science of the total environment. 181: 223-230.

https://doi.org/10.1016/0048-9697(95)05015-9

INEGI, Instituto Nacional de Estadística Geografía e Informática. 2015. Disponible en: http://www.inegi.org.mx/

INEGI/COLPOS. 1999. La ganadería familiar en México. Instituto Nacional de Estadística Geografía e Informática, Colegio de Postgraduados. México.

Kabata-Pendias A. 2000. Trace elements in soils and plants. Third Edition. CRC Press, Inc. Boca Raton. USA. pp. 365,

https://doi.org/10.1201/9781420039900

Kazi T. G., Jalbani N, Baig, J. A, Kandhro G A, Afridi H. I, Arain M. B, Jamali M. K, and Shah A. Q. 2009. "Assessment of Toxic Metals in Raw and Processed Milk Samples Using Electrothermal Atomic Absorption Spectrophotometer." Food and Chemical Toxicology 47 (9). Elsevier Ltd: 2163-69. doi:10.1016/j.fct.2009.05.035.

https://doi.org/10.1016/j.fct.2009.05.035

Kadlecová V., Němečková, D, Ječmínková, K, Stádník, L. 2014. The effects of polymorphism in the DGAT1 gene on energy balance and milk production traits in primiparous Holstein cows during the first six months of lactation, Bulgarian Journal of Agricultural Science 20 (1), 203-209.

Leeuwen H.P.V., Pinheiro, J.P. 2001. Speciation dynamics and bioavailability of metals. Exploration of the case of two uptake routes. Pure Appl. Chem. 73 (1), 39-44.

https://doi.org/10.1351/pac200173010039

Moreno-Rojas R., Amaro-Lopez, M. a., Zurera- Cosano, G., 1994. Copper, iron and zinc variations in Manchego-type cheese during the traditional cheese-making process. Food Chem. 49, 67-72. doi:10.1016/0308-8146(94)90234-8.

https://doi.org/10.1016/0308-8146(94)90234-8

Muhammad, F, M Akhtar, I Javed, Z U Rahman, I Jan, M I Anwar, and S Hayat. 2009. Quantitative Structure Activity Relationship and Risk Analysis of Some Heavy Metal Residues in the Milk of Cattle and Goat. Toxicology and Industrial Health 25 (3): 177-81. doi:Doi 10.1177/0748233709105592.

https://doi.org/10.1177/0748233709105592

NOM-001-ECOL-1996. Establece los límites máximos permisibles de contaminantes en las descargas de agua residuales en aguas y Bienes Nacionales. Diario Oficial de la Federación (DOF) 1997.

NOM-243-SSA1-2010. Productos y servicios. Leche, fórmula láctea, producto lácteo combinado y derivados lácteos. Disposiciones y especificaciones sanitarias. Métodos de prueba. Disponible en: http://dof.gob.mx/nota_detalle.php?codi go=5160755&fecha=27/09/2010

Oliver M A, 1997. Soil and human health: a review. European Journal of Soil Science, 48(4): 573-592.

https://doi.org/10.1046/j.1365-2389.1997.00124.x

Peralta-Videa J. R.., G. de la Rosa, J. H. Gonzalez, and J. L. Gardea-Torresdey. 2004. "Effects of the Growth Stage on the Heavy Metal Tolerance of Alfalfa Plants." Advances in Environmental Research 8(03):679-85. doi:10.1016/S1093-0191(03)00040-6.

https://doi.org/10.1016/S1093-0191(03)00040-6

Rego O.A., Alves, S.P., Antunes, L.M., Rosa, H.J., Al-faia, C.F., Prates, J.A., Carita, A.R., Fonseca, A.J., Bessa, R.J. 2009. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils, Journal of Dairy Science 92 (9), 4530-4540. doi:

https://doi.org/10.3168/jds.2009-2060

SAS, Institute. 2002. SAS User's Guide: Statistics Version 9.2. Statistical Analysis System Institute Cary, North Carolina, USA.

Singh A., Rajesh KS, Agrawal M,. Marshall F.M. 2010. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology 48 (2010) 611-619.

https://doi.org/10.1016/j.fct.2009.11.041

Singh K.P., Mohan, D., Sinha, S., Dalwani, R. 2004. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 55,227e255.

https://doi.org/10.1016/j.chemosphere.2003.10.050

Soares V., Mahyara M M Kus, André Luis C Peixoto, Juliana S. Carrocci, Rodrigo F S Salazar, and Hélcio J. Izário Filho. 2010. "Determination of Nutritional and Toxic Elements in Pasteurized Bovine Milk from Vale Do Paraiba Region (Brazil)." Food Control 21 (1). Elsevier Ltd: 45-49. doi:10.1016/j.foodcont.2009.03.010.

https://doi.org/10.1016/j.foodcont.2009.03.010

Sundberg J., Jo¨nsson S., Karlsson M. O., and A. Oskarsson. 1999. Lactational Exposure and Neonatal Kinetics of Methylmercury and Inorganic Mercury in Mice. Toxicology and Applied Pharmacology 154, 160-169.

https://doi.org/10.1006/taap.1998.8566

Ward NI and JM Savage. 1994. Metal dispersion and transportational activities using food crops as biomonitors. Sci Total Environ, 146: 309-319.

https://doi.org/10.1016/0048-9697(94)90251-8

Wang Y., Qiao M., Liu Y., Zhu Y. 2012. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, ChinaJournal of Environmental Sciences, 24(4) 690-698.

https://doi.org/10.1016/S1001-0742(11)60833-4

Descargas

Publicado

2016-06-30

Cómo citar

Castro González, N. P., Moreno Rojas, R., Calderón Sánchez, F., Escobar Hernández, R., & Barrios Díaz, B. (2016). Calidad de la leche de vaca en una zona de riego del estado de Puebla. Revista Biológico Agropecuaria Tuxpan, 4(1), 17–24. https://doi.org/10.47808/revistabioagro.v4i1.16

Número

Sección

Artículos Originales de Investigación

Artículos más leídos del mismo autor/a