Application of a model to predict the reserves of organic carbon in a monocultivated soil with sugar cane in tropical conditions of Cuba

Authors

  • M González Hidalgo
  • T. López Seijas
  • J. Arcia Porrúa
  • M. R. Dávila L
  • T. Ramírez Hernández
  • R. H. Ortiz
  • E. Aguirre López

DOI:

https://doi.org/10.47808/revistabioagro.v4i2.63

Keywords:

ferralsol soil, rothC26.3 model, soil organic matter

Abstract

The model RothC26.3 (Coleman and Jenkinson, 1999) was used to simulate the soil organic carbon, which works on a monthly time scale and allows determining the monthly replacement of the C by kinetic processes of first order, where the decomposition rates of its four active reservoirs, are modulated by temperature, humidity and plant cover. The research was carried out based on soil organic carbon information and agricultural yields from experiments carried out  in  crops  areas  of  the  Provincial  Research  Station  of  Sugarcane  (EPICA)  located  in Jovellanos, Matanzas province, between 1981 and 2010. The organic carbon data from arable soil layer classified as Ferralsol (0-20 cm) planted with sugarcane, corresponding to the cane plant cycle, served as a basis for parameterizing the model, whose behavior was modified by climatic conditions, coming from the meteorological station associated to the place. The aim of this work was to validate al tropical conditions of Cuba, the soil organic carbon dynamic model RothC26.3. The comparison between the simulated soil organic carbon data and those observed during the period 1981-2010, resulted 95.58% of observed data variance. It was found that the amount of organic carbon required to maintain soil organic carbon level in 1981 was 6.28 t ha-1 year-1. The results support the use of the RothC26.3 model as a tool to predict the behavior of COS in tropical conditions.

Downloads

Download data is not yet available.

References

Alexander A.G. 1985. The energy cane alternative. Sugar Series 6. Elsevier, Amsterdam, 509 pp. ISBN 0-444-41897-0. Barančíková Gabriela.; Halás J.; Gutteková M.; Makovníková J.; Nováková M.; Skalský R. y Tarasovičová Z. 2010. Application of RothC Model to Predict Soil Organic Carbon Stock on Agricultural Soils of Slovakia. Soil & Water Res. V. 5, No. 1 p 1-9.

https://doi.org/10.17221/23/2009-SWR

Cabrera J.A y Zuaznábar R. 2010. Impacto sobre el ambiente del monocultivo de la caña de azúcar con el uso de la quema para la cosecha y la fertilización nitrogenada. I. Balance del carbono. Cultivos Tropicales, vol. 31, No. 1, p. 5-13.

Charro E.; Moyano A. y Ciria P. 2006. Simular los efectos sobre el suelo agrícola según su manejo y el cambio climático mediante el modelo Roth-C. VII Congreso SEAE Zaragoza 2006. No. 66. 1-7p.

Coleman, K. & Jenkinson, D. 1999. RothC-26.3. A Model for the Turnover of Carbon in Soils. Model Description and Windows Users Guide. IACR - Rothamsted, Harpenden. 6. Cortegaza P.L. 2002. Descomposición de residuos de cosecha de caña de azúcar. Evaluación de la pérdida de masa y liberación de nutrientes. [Tesis presentada en opción al título de máster en Ciencias Agrícolas]. Universidad Agraria de la Habana, LaHabana. 95 pp.

De Oliveira A.F.; Sá J.C.M.; Harms M.G.; Miara S.; Briedis C.; Netto C.Q.; dos Santos J.B. y Canalli L.B. 2012. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais. Doi: 10.1073/pnas.1002592107 [15-4-2014].

https://doi.org/10.1073/pnas.1002592107

Dirección de Manejo Agronómico. 1980. Normas metodológicas del Departamento de Suelos y Agroquímica. Tomos I y II. Instituto de Investigaciones de la Caña de Azúcar. 150 pp.

Elliott, E.T. & Paustian, T.K. 1996. Modeling the measurable or measuring the modelable: a hierarchical approach to isolating meaningful soil organic matter fractionations. In: Evaluation of Soil Organic Matter Models Using Long-Term Datasets (eds D.S. Powlson, P. Smith & J.U. Smith), 161-179. NATO ASI Series 1: Global Environmental Change, 38. Springer- Verlag, Heidelberg.

https://doi.org/10.1007/978-3-642-61094-3_12

Fahrmeir L.; Kunstler R.; Pigeot I. Tutz G. 2004. Statistik - der Weg Zur Datenanalyse. 5ta. Edi. Springer Verlag, Berlin, Germany.

https://doi.org/10.1007/978-3-662-22657-5_13

Falloon P. 2001. Large scale spatial modelling of soil organic carbon dynamics. Tesis de doctorado, University of Nottingham.

Falloon P. 2001. Large scale spatial modelling of soil organic carbon dynamics. Tesis de doctorado, University of Nottingham.

Falloon P. y Smith P. 2002. Simulating SOC changes in long-term experiments with RothC and Century model evaluation for a regional scale application. Soil use and management, 18, p. 101-111.

https://doi.org/10.1111/j.1475-2743.2002.tb00227.x

Falloon P.; Smith P.; Coleman K. y Marshall S. 1998. Estimating the size of the inert organic matter pools for use in the Rothamsted carbon model. Soil Biology and Biochemistry 30, p.1207-1211.

https://doi.org/10.1016/S0038-0717(97)00256-3

Farina R.; Coleman K. y Withmore A.P. 2013. Modification of the RothC model for simulations of soil organic C dynamics in dry-land region. Geoderma, Vol. 200-201, p. 18-30.

https://doi.org/10.1016/j.geoderma.2013.01.021

Galdós M.V.; Cerri C.C.; Cerri C.E.P.; Paustian K. y van Antwerpen R. 2010. Simulation of sugarcane residue decomposition and aboveground growth. Plant Soil 326:243-259. DOI 10.1007/s11104-009-0004-3.

https://doi.org/10.1007/s11104-009-0004-3

Grace P.R.; Post W.M. y Hennessy K. 2006. The potential impact of climate change on Australia's soil organic carbon resources. Carbon Balance Manag. p. 1-14.

https://doi.org/10.1186/1750-0680-1-14

Guo S.; Wu J.; Coleman K.; Zhu H.; Li Y. y Liu W. 2012. Soil organic carbon dynamics in a dryland cereal cropping system of the Loess Plateau under long- term nitrogen fertilizer applications. Plant and Soil 353:321-332 DOI: 10.1007/s11104-011-1034-1.

https://doi.org/10.1007/s11104-011-1034-1

Jenkinson D.S. 1990. The turnover of organic carbon and nitrogen in soil, Philos. Trans. R. Soc. Lond., B. 329, p. 361-368.

https://doi.org/10.1098/rstb.1990.0177

Jenkinson D.S. y Ranyer J.H. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci. 123, p. 298- 305.

https://doi.org/10.1097/00010694-197705000-00005

Jenkinson D.S.; Harris H.C.; Ryan J.; McNeill A.M.; Pilbeam C.J. y Coleman K. 1999. Organic matter turnover in a calcareous clay soil from Syria under a two-course cereal rotation. Soil Biology and Biochemistry 31 (5), 687-693.

https://doi.org/10.1016/S0038-0717(98)00157-6

Kadono A.; Funakawa S. y Kosaki T. 2012. Comparison of Measurable and Conceptual Soil Organic Carbon pools using the RothC Model in Eurasia Steppe Soils under Different Land Use. Pedologist, p. 442-448.

Legates D. y McCabe G. 1999. Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation. Water resour. Res., 35(1) 233-241.

https://doi.org/10.1029/1998WR900018

Legates D.R. y Davis R.E., 1997. The continuing search for an anthropogenic climate change signal: limitations of correlation- based approaches. Geophys. Res. Lett. 24, p. 2319-2322.

https://doi.org/10.1029/97GL02207

Liu H.; Jiang G.M.; Zhuang H.Y.; y Wang K.J. 2008. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renew. Sustain. Energ y Rev. 12:1402-1418. doi:10.1016/j.rser.2007.01.011.

https://doi.org/10.1016/j.rser.2007.01.011

Lobe I.; Bol R.; Ludwig B.; DuPreeze C.C. y Amelung W. 2005. Savanna-derived organic matter remaining in arable soils of the South African High yield long-term mixed cropping: evidence from 13C and15N natural abundance. Soil Biology and Biochemistry, 37, p. 1898-1909.

https://doi.org/10.1016/j.soilbio.2005.02.030

Ludwig B.; Helfrich M. y Flessa H. 2005. Modelling the long-term stabilization of carbon from maize in a silty soil. Plant and Soil, 278,315-325.

https://doi.org/10.1007/s11104-005-8808-2

McCown R.L., Hammer G.L. y Hargreaves J.N.G., 1996. APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research. Agric. Syst. 50, p. 255-271.

https://doi.org/10.1016/0308-521X(94)00055-V

McCuen R.H.; Knight Z. y Cutter A.G. 2006. Evaluation of the Nash-Sutcliffe Efficiency Index. J. Hydrol. Eng. 11, p 597-602.

https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)

Nieto O.M.; Castro J.; Fernández E. y Smith P. 2010. Simulation of soil organic carbon stocks in a Mediterranean Olive grove under different soil-management systems using the RothC model. Soil Use and Management, v.26, p.118-125.

https://doi.org/10.1111/j.1475-2743.2010.00265.x

Parton W.J.; Stewart J.W.B. y Cole C.V. 1988. Dynamics of C, N, P and S in Grassland Soils - A model. Bio-geochemistry, 5, p.109-132.

https://doi.org/10.1007/BF02180320

Pate, I.S. y Herridge, D.F. 1981. Partitioning and utilization of Net photosynthate in a nodulated annual legume. I Exp Bot 29. P.401-412.

https://doi.org/10.1093/jxb/29.2.401

Pessenda L.C.R.; Boulet R.; Aravena R.; Rosolen V.; Gouveia S.E.M.; Riveiro A.S. y Lamote M. 2001. Origins and dynamics of soil organic matter and vegetation changes during the Holocene in a forest- savanna transition zone. Brazilian Amazon Region. Holocene, v.11, No. 2, p 250-254.

https://doi.org/10.1191/095968301668898509

Ritter A. y Muñoz-Carpena. 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology 480, p. 33-45·

https://doi.org/10.1016/j.jhydrol.2012.12.004

Smith P. 2005. An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 56, p. 673-680.

https://doi.org/10.1111/j.1365-2389.2005.00708.x

Smith P.; Martino D; Cai Z.; Gwary D.; Janzen H; Kumar P.; McCarl B.; Ogle S.; O'Mara F.; Scholes C.B. y Sirotenko O. 2007: Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Metz B.; Davidson R.Bosch P.R.; Dave R.; Meyer L.A. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Smith P.; Smith J.U.; Powlson D.S.; McGill W.B.; Arah J.R.M.; Chertov O.G.; Coleman K.; Franko U.; Frolking S.; Jenkinson D.S.; Jensen L.S.; Kelly R.H.; Klein- Gunnewiek H.; Komarov A.S.; Li C.; Molina J.A.E.; Mueller T.; Parton W.J.; Thornley J.H.M. y Whitmore A.P. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, p. 153-225.

https://doi.org/10.1016/S0016-7061(97)00087-6

Sparling G., Parfitt R.L., Hewitt A.E., and Schipper L.A., (2003). Three approaches to define desired soil organic matter contents. Journal of Environmental Quality, 32 (3): 760-766.

https://doi.org/10.2134/jeq2003.7600

Sulroca F. 2004. Los residuos de la cosecha cañera y su factibilidad en la producción de alimento animal y biofertilizantes. Revista Cuba Azúcar Vol. XXXIII Oct - Dic. 2004 p. 25-36.

Van Wesemael Bas; Paustian K.; Meersmans J.; Goidts Esther; Barančíková Gabriela y Easter M. 2010. Agricultural management explains historic changes in regional soil carbon stocks. Proc. Natl. Acad. Sci. USA. Aug 17, 2010; 107(33): 14926-14930. Publicado en línea: Ago. 2, 2010. Doi: 10.1073/pnas.1002592107.

https://doi.org/10.1073/pnas.1002592107

Von Lützow M.; Kögel-Knabner I.; Ekschmitt K.; Flessa H.; Guggenberger G.; Matzner E. y Marschner B. 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry 39, p.2183-2428.

https://doi.org/10.1016/j.soilbio.2007.03.007

Walkley A. y Black I.A. 1934. An examination of the method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci.37, p. 29-37.

https://doi.org/10.1097/00010694-193401000-00003

Wallach D.; Makowski D. y Jones J.W. (Ed.) 2006. Working with Dynamic Crop Models Evaluation, Analysis, Parameterization and Applications, Elsevier, p. 447.

Zimmermann M.; Leifeld J.; Schmidt M.W.I.; Smith P. y Fuhrer J. 2007. Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science 58, p. 658-667.

https://doi.org/10.1111/j.1365-2389.2006.00855.x

Published

2016-12-31

How to Cite

González Hidalgo , M., López Seijas , T., Arcia Porrúa , J., Dávila L, M. R., Ramírez Hernández , T., Ortiz, R. H., & Aguirre López , E. (2016). Application of a model to predict the reserves of organic carbon in a monocultivated soil with sugar cane in tropical conditions of Cuba. Revista Biológico Agropecuaria Tuxpan, 4(2), 1–18. https://doi.org/10.47808/revistabioagro.v4i2.63

Issue

Section

Original Research Papers