Effect of the addition of an antioxidant on the mitochondrial activity and motility of cryopreserved bovine spermatozoa

Authors

  • Itzayana Mejía-Flores Departamento Ciencias Pecuarias. Universidad Nacional Autónoma de México - FES Cuautitlán.
  • Javier Hernández-Ignacio Departamento de Reproducción FMVZ-UNAM. Universidad Nacional Autonoma De México
  • Natalia Chiquete-Félix Insituto de Fisiología Celular-UNAM. Universidad Nacional Autonoma De México
  • Miguel Angel Cornejo-Cortes Departamento Ciencias Biológicas. Universidad Nacional Autónoma de México
  • Miguel Ángel Lammoglia-Villagómez Facultad de Ciencias Biológicas y Agropecuarias. Universidad Veracruzana

DOI:

https://doi.org/10.47808/revistabioagro.v10i2.429

Keywords:

Antioxidant, spermatozoa, cryopresevation

Abstract

The freeze-thaw process causes oxidative stress, osmotic stress, heat shock, intracellular ice formation, alterations in the composition of plasma membrane lipids and proteins, decreased sperm viability and motility, damage to the mitochondria, acrosome and tail, and promotes DNA fragmentation. Mitochondria are a source of energy for respiration and the main site of reactive oxygen species (ROS) generation.  Antioxidants must be present within the mitochondrion in large quantities to be effective in reducing ROS. However, the mitochondrial inner membrane is not permeable to most molecules. Several studies indicate that antioxidant supplementation during the

 

semen freezing process improves frozen-thawed sperm quality to several degrees, but there is still a lack of a recognized effective antioxidant. There are few studies on the effects of supplementation of a mitochondria-targeted antioxidant in semen cryopreservation, so the aim of the present work is to evaluate the effect of the addition of MitoTEMPO on the mitochondrial activity and motility of bovine sperm cryopreserved in a commercial extender. The supplementation of the antioxidant in the commercial extender at different concentrations improved sperm motility by 13% and 17% with respect to the control group; decreased ROS by 29% and 18% and increased the percentage of ATP production by 257% and 161% in the frozen-thawed bovine spermatozoa. These results support the importance of the use of antioxidants during sperm cryopreservation, concluding that the use of MitoTEMPO in relatively low concentrations in the extender improves semen quality after sperm thawing.

Downloads

Download data is not yet available.

References

Azadi L., Tavalaee M., Deemeh M.R., et al., 2017. Effects of tempol and quercetin on human sperm function after cryopreservation, Cryo Lett. 38; 29–36.

Banihani S., Agarwal A., Sharma, R., et al., 2015. Cryoprotective effect of l-carnitine on motility, vitality and DNA oxidation of human spermatozoa, Andrologia 46; 637–641. https://doi.org/10.1111/and.12130 DOI: https://doi.org/10.1111/and.12130

Gruber, J., Fong, S., Chen, C.-B., Yoong, S., Pastorin, G., Schaffer, S., Cheah, I., Halliwell, B. 2013. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing, Biotechnol. Adv. 31, 563–592. https://doi.org/10.1016/j.biotechadv.2012.09.005 DOI: https://doi.org/10.1016/j.biotechadv.2012.09.005

Guthrie, H.D., Welch, G.R. 2005. Impact of storage prior to cryopreservation on plasma membrane function and fertility of boar sperm. Theriogenology, 63, 396-410. https://doi.org/10.1016/j.theriogenology.2004.09.020 DOI: https://doi.org/10.1016/j.theriogenology.2004.09.020

Hu H., and Li M., 2016. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons[J], Biochem. Biophys. Res. Commun. 478; 174–180. https://doi.org/10.1016/j.bbrc.2016.07.071 DOI: https://doi.org/10.1016/j.bbrc.2016.07.071

Kumar, A. Gosh, S. 2021. Efecto del diluyente de semen incorporado Mito-Tempo sobre los atributos fisicomorfológicos y la integridad funcional de la membrana de los espermatozoides de búfalo descongelados y congelados. Criocartas, vol. 42 (núm. 2), pág. 111-119.

Layek, S.S., Mohanty, T.K., Kumaresan, A., Parks, J.E. 2016. Cryopreservation of bull semen: Evolution from egg yolk based to soybean-based extenders. Animal Reproduction Science, 172, 1-9. https://doi.org/10.1016/j.anireprosci.2016.04.013 DOI: https://doi.org/10.1016/j.anireprosci.2016.04.013

Lu, X., Zhang, Y., Bai, H., Liu, J., Li, J., Bin Wu, B. 2017. Mitochondria-targeted antioxidant mitotempo improves the post-thaw sperm quality. Cryobiology https://doi.org/10.1016/j.cryobiol.2017.12.009 DOI: https://doi.org/10.1016/j.cryobiol.2017.12.009

Martinez, C. O., Juárez-Mosqueda, M. L., Hernández, J., Valencia, J. 2006. Cryopreservation of bull spermatozoa alters the perinuclear theca. Theriogenology, 66, 1969-1975. https://doi.org/10.1016/j.theriogenology.2005.10.028 DOI: https://doi.org/10.1016/j.theriogenology.2005.10.028

Mostek, A., Dietrich, M.A., Slowinska, M., Ciereszko, A. 2017. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology, 92, 95-102. https://doi.org/10.1016/j.theriogenology.2017.01.011 DOI: https://doi.org/10.1016/j.theriogenology.2017.01.011

Naresh, S. 2016. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa. Cryobiology, 72, 7-13. https://doi.org/10.1016/j.cryobiol.2015.12.004 DOI: https://doi.org/10.1016/j.cryobiol.2015.12.004

Reza, M. Nader, A. 2021. Efectos de la suplementación con extensor de congelación con el antioxidante Mito-Tempo dirigido a las mitocondrias sobre la calidad del semen de gallo congelado y descongelado y el rendimiento reproductivo. Ciencia de la Producción Animal, Vol. 225. https://doi.org/10.1016/j.theriogenology.2005.09.010

Silva, P. F.N., Gadella B.M. 2006. Detection of damage in mammalian sperm cells. Theriogenology, 65, 958-878. DOI: https://doi.org/10.1016/j.theriogenology.2005.09.010

Stowe, D.F., Camara, A.K. 2009. Mitochondrial reactive oxygen species production in excitable cells: Modulators of Mitochondrial and Cell Function. Antioxid Redox Signal. 2009 Jun; 11(6): 1373–1414. https://doi.org/10.1089/ars.2008.2331 DOI: https://doi.org/10.1089/ars.2008.2331

Sullivan, R. 2004. Male fertility markers, myth or reality. Animal Reproduction Science, 82/83, 341-347. https://doi.org/10.1016/j.anireprosci.2004.05.007 DOI: https://doi.org/10.1016/j.anireprosci.2004.05.007

Trnka J., Blaikie F.H., Logan A. et al., 2009. Antioxidant properties of MitoTEMPOL and its hydroxylamine, Free Radic. Res. 43; 4–12. https://doi.org/10.1080/10715760802582183 DOI: https://doi.org/10.1080/10715760802582183

Zarei, F. Daghigh, H. 2020. Supplementation of ram's semen extender with Mito-TEMPO I: Improvement in quality parameters and reproductive performance of cooled-stored semen. Cryobiology https://doi.org/10.1016/j.cryobiol.2020.10.018 DOI: https://doi.org/10.1016/j.cryobiol.2020.10.018

Published

2022-12-01

How to Cite

Mejía-Flores , I., Hernández-Ignacio , J., Chiquete-Félix , N., Cornejo-Cortes, M. A., & Lammoglia-Villagómez M. Ángel. (2022). Effect of the addition of an antioxidant on the mitochondrial activity and motility of cryopreserved bovine spermatozoa. Revista Biológico Agropecuaria Tuxpan, 10(2), 103–114. https://doi.org/10.47808/revistabioagro.v10i2.429

Issue

Section

Original Research Papers

Most read articles by the same author(s)